Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Molecules ; 27(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335140

ABSTRACT

Testicular oxidative stress is one of the most common factors underlying male infertility. Welted thistle, Carduus crispus Linn., and its bioactive principles are attracting scientific interest in treating male reproductive dysfunctions. Here, the protective effects of apigenin isolated from C. crispus against oxidative damage induced by hydrogen peroxide (H2O2) and dysregulation in spermatogenesis associated parameters in testicular sperm cells was investigated. Cell viabilities, ROS scavenging effects, and spermatogenic associated molecular expressions were measured by MTT, DCF-DA, Western blotting and real-time RT-PCR, respectively. A single peak with 100% purity of apigenin was obtained in HPLC conditions. Apigenin treated alone (2.5, 5, 10 and 20 µM) did not exhibit cytotoxicity, but inhibited the H2O2-induced cellular damage and elevated ROS levels significantly (p < 0.05 at 5, 10 and 20 µM) and dose-dependently. Further, H2O2-induced down-regulation of antioxidant (glutathione S-transferases m5, glutathione peroxidase 4, and peroxiredoxin 3) and spermatogenesis-associated (nectin-2 and phosphorylated-cAMP response element-binding protein) molecular expression in GC-2spd cells were attenuated by apigenin at both protein and mRNA levels (p < 0.05). In conclusion, our study showed that apigenin isolated from C. crispus might be an effective agent that can protect ROS-induced testicular dysfunctions.


Subject(s)
Apigenin , Carduus , Apigenin/metabolism , Apigenin/pharmacology , Carduus/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Spermatogenesis , Spermatozoa/metabolism
2.
Mycobiology ; 50(1): 89-98, 2022.
Article in English | MEDLINE | ID: mdl-35291597

ABSTRACT

Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1ß, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

3.
Pharm Biol ; 60(1): 404-416, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35175170

ABSTRACT

CONTEXT: Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE: The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 µg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS: COR treatment (1, 5, and 10 µg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION: COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.


Subject(s)
Deoxyadenosines/pharmacology , Leydig Cells/drug effects , Spermatogenesis/drug effects , Testis/drug effects , Aging , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cordyceps/chemistry , Deoxyadenosines/isolation & purification , Hydrogen Peroxide , Leydig Cells/metabolism , Male , Mice , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
4.
J Ginseng Res ; 45(1): 66-74, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437158

ABSTRACT

BACKGROUND: Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. METHODS: Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (µOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. RESULTS: RGAE (at 30µg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = µA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 µm vs control, 3.9+/-0.09 µm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. CONCLUSION: RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.

5.
J Ginseng Res ; 44(6): 799-807, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33192123

ABSTRACT

BACKGROUND: The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. METHODS: We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. RESULTS: CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. CONCLUSIONS: Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.

6.
J Ginseng Res ; 44(4): 593-602, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32617039

ABSTRACT

BACKGROUND: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. METHODS: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. RESULTS: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1ß, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. CONCLUSION: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

7.
Nutrients ; 11(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018574

ABSTRACT

Age-related male sexual dysfunction covers a wide variety of issues, together with spermatogenic and testicular impairment. In the present work, the effects of cordycepin (COR), an active constituent of a nutrient powerhouse Cordyceps militaris Linn, on senile testicular dysfunction in rats was investigated. The sperm kinematics, antioxidant enzymes, spermatogenic factors, sex hormone receptors, histone deacetylating sirtuin 1 (SIRT1), and autophagy-related mammalian target of rapamycin complex 1 (mTORC1) expression in aged rat testes were evaluated. Sprague Dawley rats were divided into young control (2-month-old; YC), aged control (12-month-old; AC), and aged plus COR-treated groups (5 (COR-5), 10 (COR-10), and 20 (COR-20) mg/kg). The AC group showed reduced sperm kinematics and altered testicular histomorphology compared with the YC group (p < 0.05). However, compared with the AC group, the COR-treated group exhibited improved sperm motility, progressiveness, and average path/straight line velocity (p < 0.05-0.01). Alterations in spermatogenesis-related protein and mRNA expression were significantly ameliorated (p < 0.05) in the COR-20 group compared with the AC group. The altered histone deacetylating SIRT1 and autophagy-related mTORC1 molecular expression in aged rats were restored in the COR-20 group (p < 0.05). In conclusion, the results suggest that COR holds immense nutritional potential and therapeutic value in ameliorating age-related male sexual dysfunctions.


Subject(s)
Aging , Cordyceps/chemistry , Deoxyadenosines/pharmacology , Testis/drug effects , Animals , Deoxyadenosines/administration & dosage , Gene Expression Regulation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Receptors, LH/genetics , Receptors, LH/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Spermatogenesis , Transcription Factors/genetics , Transcription Factors/metabolism
8.
J Ginseng Res ; 43(1): 125-134, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662301

ABSTRACT

BACKGROUND: Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. METHODS: Male rats (age, 4 wk; weight, 60-70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. RESULTS: Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-⍺), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. CONCLUSION: KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.

9.
J Ginseng Res ; 43(1): 135-142, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662302

ABSTRACT

BACKGROUND: Panax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress-induced testicular damage in experimental rats was evaluated. METHODS: Male rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures (32 ± 1°C, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. RESULTS: Significant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress-induced changes in rats significantly (p < 0.05) at both concentrations. CONCLUSION: KGC04P attenuated heat stress-induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

10.
J Ginseng Res ; 41(4): 578-588, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29021707

ABSTRACT

BACKGROUND: Elevated testicular temperature disrupts spermatogenesis and causes infertility. In the present study, the protective effect of enzymatically biotransformed Panax ginseng Meyer by pectinase (GINST) against chronic intermittent heat stress-induced testicular damage in rats was investigated. METHODS: Male Sprague-Dawley rats (4 wk old, 60-70 g) were divided into four groups: normal control (NC), heat-stress control (HC), heat-stress plus GINST-100 mg/kg (HG100), and heat-stress plus GINST-200 mg/kg (HG200) treatment groups. Each dose of GINST (100 mg/kg and 200 mg/kg) was mixed separately with a regular pellet diet and was administered orally for 24 wk. For inducing heat stress, rats in the NC group were maintained at 25°C, whereas rats in the HC, HG100, and HG200 groups were exposed to 32 ± 1°C for 2 h daily for 6 mo. At week 25, the testes and serum from each animal were analyzed for various parameters. RESULTS: Significant (p < 0.01) changes in the sperm kinematic values and blood chemistry panels were observed in the HC group. Furthermore, spermatogenesis-related molecules, sex hormone receptors, and selected antioxidant enzyme expression levels were also altered in the HC group compared to those in the NC group. GINST (HS100 and HS200) administration significantly (p < 0.05) restored these changes when compared with the HC group. For most of the parameters tested, the HG200 group exhibited potent effects compared with those exhibited by the HG100 group. CONCLUSION: GINST may be categorized as an important medicinal herb and a potential therapeutic for the treatment of male subfertility or infertility caused by hyperthermia.

11.
J Ginseng Res ; 41(4): 608-614, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29021711

ABSTRACT

BACKGROUND: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. METHODS: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. RESULTS: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. CONCLUSION: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

12.
Am J Chin Med ; 45(6): 1147-1156, 2017.
Article in English | MEDLINE | ID: mdl-28830207

ABSTRACT

The first record of ginseng use dates back over two millennia, and ginseng is now popular in more than 35 countries. Ginsenosides are the pharmacological constituents responsible for the beneficial effects of ginseng. There is increasing evidence that ginseng and its bioactive ingredients are involved in the regulation of nuclear receptors, molecules that act in response to the specific binding of hormones, which link to a diverse array of signaling pathways, such as the ERK and PI3K/Akt pathways. Knowledge of the mechanism of how ginseng mediates these complexes is essential for the development of multi-target phytomedicine as possible therapy for different diseases. Here, we discuss the literature on the effects of ginseng and its constituents on estrogen, glucocorticoid, peroxisome proliferator-activated, and androgen nuclear hormone receptors, as well as how ginseng and its constituents exert their biological function in the treatment of cancer, obesity, and cardiovascular and neurological disorders. The accumulated results definitely show that the nuclear receptors are cellular targets of ginsenosides, but more rigorous data are required to establish and provide a scientific basis to confirm the suggested efficacy of ginseng or products with ginsenosides.


Subject(s)
Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Panax/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Receptors, Cytoplasmic and Nuclear/drug effects , Animals , Cardiovascular Diseases/drug therapy , Female , Ginsenosides/isolation & purification , Humans , MAP Kinase Signaling System , Male , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Obesity/drug therapy , Peroxisome Proliferator-Activated Receptors/drug effects , Peroxisome Proliferator-Activated Receptors/physiology , Plant Extracts/isolation & purification , Receptors, Androgen/drug effects , Receptors, Androgen/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Receptors, Estrogen/drug effects , Receptors, Estrogen/physiology , Receptors, Glucocorticoid/drug effects , Receptors, Glucocorticoid/physiology
13.
J Ginseng Res ; 41(2): 215-221, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28413327

ABSTRACT

Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.

14.
Reproduction ; 153(6): 737-747, 2017 06.
Article in English | MEDLINE | ID: mdl-28428445

ABSTRACT

Testicular hyperthermia is well studied to cause impaired spermatogenesis. In the present study, the protective effect of enzymatically modified (pectinase-treated) Panax ginseng (GINST) against intermittent sub-chronic heat stress-induced testicular damage in rats was investigated. Male Sprague-Dawley rats were divided into four groups: normal control (NC), heat-stressed control (HC), heat-stressed plus GINST-100 mg/kg/day (HG100) and heat-stressed plus GINST-200 mg/kg/day (HG200) treatment groups. GINST (100 and 200 mg/kg/day) was mixed separately with a regular pellet diet and was administered orally for 8 weeks starting from 1 week before heat exposure. Parameters such as organ weight, blood chemistry, sperm kinetic values, expression of antioxidant enzymes, spermatogenesis molecules and sex hormone receptors levels were measured. Data revealed that kidney and epididymis weight were significantly (P < 0.05) decreased with heat stress and recovered by GINST treatment. Further, the altered levels of blood chemistry panels and sperm kinetic values in heat stress-induced rats were attenuated when GINST was administered (P < 0.05). Furthermore, the expression levels of antioxidant-related enzymes (GSTM5 and GPX4), spermatogenesis-related proteins (CREB1 and INHA) and sex hormone receptors (androgen receptor, luteinizing hormone receptor and follicle-stimulating hormone receptor) were reduced by heat stress; however, GINST treatment effectively ameliorated these changes. In conclusion, GINST was effective in reducing heat-induced damage in various male fertility factors in vivo and has considerable potential to be developed as a useful supplement in improving male fertility.


Subject(s)
Heat Stress Disorders/physiopathology , Hot Temperature , Panax/chemistry , Polygalacturonase/metabolism , Spermatogenesis/drug effects , Testis/pathology , Animals , Male , Rats , Rats, Sprague-Dawley , Testis/drug effects
16.
Exp Gerontol ; 90: 26-33, 2017 04.
Article in English | MEDLINE | ID: mdl-28126553

ABSTRACT

Korean red ginseng (Panax ginseng Meyer) is known to rejuvenate testicular effectiveness and the sperm maturation process by regulating redox proteins in aged rats. This study was performed to investigate the effect of Korean red ginseng water extract (KRG-WE) on the expression level of spermatogenesis-related key biomolecules and sex hormone receptors as well as enzymes regulating oxidation, histone deacetylation, and growth-related activities in aged rat testis. KRG-WE (200mg/kg) mixed with a regular pellet diet was administered to 12-month-old rats for 6months (KRG-AC), whereas the young (YC, 2months) and aged (AC, 12months) controls received the vehicle only. The results showed that the expression levels of spermatogenesis-related key biomolecules (inhibin-α, nectin-2, and cyclic adenosine monophosphate [cAMP] responsive element binding protein [CREB]-1), sex hormone receptors (androgen, luteinizing- and follicle-stimulating hormone receptors [AR, LHR, and FSHR, respectively]), and antioxidant enzymes (glutathione S-transferase mu [GSTm]-5, glutathione peroxidase [GPx]-4, peroxiredoxin [PRx]-3), as well as histone deactylation (silent mating type information regulation 2 homolog 1, SIRT1) and growth-related (mammalian target of rapamycin complex 1, mTORC1) molecules were significantly altered in the AC group rat testes compared with those of the YC group. However, KRG-WE treatment of the AC group significantly (p<0.05) attenuated these molecular changes. From these results, it can be concluded that long-term administration of KRG-WE significantly delayed the aging-induced testicular dysfunction.


Subject(s)
Aging/metabolism , Antioxidants/pharmacology , Panax , Plant Extracts/pharmacology , Sperm Maturation/drug effects , Spermatozoa/metabolism , Aging/drug effects , Animals , Male , Oxidation-Reduction , Phytotherapy , Rats
17.
J Ginseng Res ; 40(3): 292-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27616906

ABSTRACT

BACKGROUND: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. METHODS: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. RESULTS: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. CONCLUSION: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

18.
J Ginseng Res ; 40(2): 185-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27158240

ABSTRACT

BACKGROUND: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. METHODS: Hydrogen peroxide (H2O2)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. RESULTS: GINST treatment (50 µg/mL, 100 µg/mL, and 200 µg/mL) significantly (p < 0.05) inhibited the H2O2-induced (200 µM) cytotoxicity in GC-2spd cells. Furthermore, GINST (50 µg/mL and 100 µg/mL) significantly (p < 0.05) ameliorated the H2O2-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-α, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated H2O2-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. CONCLUSION: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.

19.
Int J Syst Evol Microbiol ; 65(10): 3326-3332, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297032

ABSTRACT

A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4­37 °C (optimum, 30 °C), at pH 3.5­8.0 (optimum, pH 5.0­6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys­d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).


Subject(s)
Gastrointestinal Tract/microbiology , Lactobacillus/classification , Phylogeny , Wasps/microbiology , Animals , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Lactobacillus/genetics , Lactobacillus/isolation & purification , Molecular Sequence Data , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA
20.
Neuropharmacology ; 97: 46-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25983275

ABSTRACT

The selective loss of dopaminergic neurons in Parkinson's disease (PD) is associated with microglial activation. Therefore, the importance of early therapeutic intervention to inhibit microglial activation would be an effective strategy to alleviate the progression of PD. α-Asarone, an active compound found in Araceae and Annonaceae plant species has been used to improve various disease conditions including central nervous system disorders. In the present study the in vitro and in vivo therapeutic effects of α-asarone isolated from the rhizome of Acorus gramineus Solander was evaluated on microglia-mediated neuroinflammation and neuroprotection. Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells were used to evaluate in vitro effects. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of PD was developed to study the neuroprotective effects of α-asarone in vivo. The results indicated that α-asarone significantly attenuated the LPS-stimulated increase in neuroinflammatory responses and suppressed pro-inflammatory cytokine production in BV-2 cells. Mechanistic study revealed that α-asarone inhibited the LPS-stimulated activation via regulation of nuclear factor kappa-B by blocking degradation of inhibitor kappa B-alpha signaling in BV-2 microglial cells. In in vivo studies, MPTP intoxication to mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with α-asarone suppressed microglial activation and attenuated PD-like behavioral impairments as assessed by the Y-maze and pole tests. Taken together, these data demonstrate that α-asarone is a promising neuroprotective agent that should be further evaluated and developed for future prevention and treatment of microglia-mediated neuroinflammatory conditions including PD.


Subject(s)
Anisoles/pharmacology , MPTP Poisoning/drug therapy , Microglia/drug effects , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Allylbenzene Derivatives , Animals , Anisoles/chemistry , Anisoles/isolation & purification , Brain/drug effects , Brain/immunology , Brain/pathology , Cell Line , Cytokines/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Dopaminergic Neurons/physiology , Dose-Response Relationship, Drug , Lipopolysaccharides , MPTP Poisoning/immunology , MPTP Poisoning/pathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Motor Activity/drug effects , Motor Activity/physiology , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...